Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.
نویسندگان
چکیده
Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.
منابع مشابه
Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملPreparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery
The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...
متن کاملThe effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells
Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...
متن کاملPreparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design
The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanaoparticles in order to use in pulmonary drug delivery. Nanoparticles are exhaled because of thier small size, Preparation of nanoaggregates in micron-sized scale and re-disrpersion of them after the deposition in the lung is one approach in order to overcome this problem, which we used i...
متن کاملMesoporous Silica Nanoparticles as a Nanocarrier for Delivery of Vitamin C
Background: In the last decades, mesoporous silica nanoparticles (MSN) are improved for drug delivery, imaging, and biomedical applications due to their special properties such as large surface area, high drug loading capacity, tunable pore size, and modification of surface area by functional groups. Objectives: The aim of this study was to evaluate MSNs as carriers for oral colon-specific and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2017